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We report experimental results on highly supercritical thermal convection in a
rapidly rotating hemispherical shell with parabolic gravity. Using silicone oil as
the working fluid and an Ekman number Ek =4.7 × 10−6 we reach Rayleigh numbers
up to 1.2 × 1010, over 600 times critical. In-situ temperature measurements show
that, at these highly supercritical states where convective heat transfer becomes
dominant, the time-averaged temperature in the fluid becomes nearly uniform except
in a thin thermal boundary layer near the inner spherical boundary. Heat transfer
measurements show that Nusselt number Nu increases with Rayleigh number Ra as
Nu ∝ Ra0.4. The measured amplitudes of temperature fluctuations scale well with a
model of geostrophic convective turbulence. We also examine convection in a two-
layer fluid in the same geometry, using layers of water and silicone oil to produce
a stable density stratification. We determine the dependence of heat transfer on the
thickness ratio of the layers.

1. Introduction
Thermal convection in a rapidly rotating spherical shell is the basic model for

convection in planetary cores and stellar interiors. A large number of theoretical,
numerical, and experimental studies have been made in order to understand this
style of convection (for a recent review, see Zhang & Schubert 2000). The linear
regime (near the onset of convection) has been investigated analytically (e.g. Jones,
Soward & Mussa 2000 and references therein), and the basic structures in the weakly
nonlinear regime have been investigated numerically (e.g. Zhang 1992). Laboratory
experiments have also played an important role, where the centrifugal force is
substituted for radially dependent gravity, a technique first used by Busse & Carrigan
(1974, 1976). At low Ekman (Ek) and high Rayleigh (Ra) numbers (see table 1
for the definitions of these and other parameters), which is the relevant regime
for planetary cores, convection is characterized by fine-scaled, quasi-geostrophic
turbulence. Quasi-geostrophic convective turbulence is easily attained in laboratory
experiments using rapidly rotating spheres and hemispheres. High-Rayleigh-number
(Ra/Rac > 10) thermal convection at low Ekman number (Ek = 10−6) was studied
by Cardin & Olson (1994), using water (Prandtl number Pr= 7.1) as the working
fluid, and they proposed a scaling law applicable to high-Rayleigh-number conditions.
Sumita & Olson (2000) used the hemispherical shell geometry to examine the flow
pattern and thermal structure at Ek= 4.7 × 10−6 and Ra/Rac < 45, also using water



272 I. Sumita and P. Olson

Property Units Water 1 cSt silcone oil

Density ρ kg m−3 1000 816

Heat capacity Cp J kg−1 K−1 4182.0 1716.1
Kinematic viscosity ν m2 s−1 1.0 × 10−6 1.0 × 10−6

Thermal conductivity kT W m−1 K−1 0.594 0.100
Thermal diffusivity κ m2 s−1 1.42 × 10−7 7.17 × 10−8

Thermal expansivity α K−1 2.1 × 10−4 1.34 × 10−3

Prandtl number Pr none 7.1 13.9
Ekman number Ek none 4.66 × 10−6 4.64 × 10−6

Rayleigh number Ra none 1.8 × 108–9.4 × 108a
1.24 × 109–1.24 × 1010

Ra/Rac
b none 10–52 63–634

Table 1. Dimensionless numbers and parameters and their values in the experiments. Properties
of water are at 20 ◦C, silicone oil are at 25 ◦C. Pr = ν/κ , Ek= ν/(ΩD2), Ra= αg�T D3/(κν),
Nu =QIC/(k�T/D), QIC: inner sphere heat flow (W), g =ΩD2: centrifugal acceleration, Ω:
angular velocity of rotation, D: shell thickness, �T : temperature difference across the shell.
a For the data points used in figure 2. b See text for critical Rayleigh number (Rac) values.

as the working fluid. Aubert et al. (2001) made detailed velocity measurements in a
spherical shell with a cylindrical inner core, using water at Ek= 10−5 to 10−6 and
3 <Ra/Rac < 80, as well as liquid gallium (Pr � 0.025) at Ek = 10−6 to 10−7 and
1 <Ra/Rac < 10.

In this paper, we extend the experiments of Sumita & Olson (2000), using silicone
oil as the working fluid. This allows us to reach Rayleigh numbers up to 1.2 × 1010

(∼ 634Rac), an order of magnitude higher than that in Sumita & Olson (2000) yet
at the same Ekman number and a similar Prandtl number. The range of Rayleigh
numbers in our experiments include the highest case studied by Boubnov & Golitsyn
(1986, 1990), in a regime they have called “irregular geostrophic turbulence”.

By combining our experiments with lower-Rayleigh-number experiments by
Sumita & Olson (2000), we derive power-law relationships for heat transfer and
temperature fluctuations over 3 orders of magnitude in the Rayleigh number. We find
that these relationships closely match predictions for these variables derived for the
asymptotic regime of rapidly rotating spherical shell convection.

2. Experimental method
The experimental apparatus shown in figure 1 is essentially the same as that used

in Sumita & Olson (2000). It consists of a hemispherical shell of thickness 10 cm, with
the temperature of the inner sphere fixed at a lower temperature than the working
fluid by cooling fluid circulated through the inner sphere. The hemisphere is rotated
steadily at 206 r.p.m., the same rate as in Sumita & Olson (2000). The combined
effect of the centrifugal force and laboratory gravity produces parabolic equipotential
surfaces. The equatorial lid is relatively unimportant beyond the critical Rayleigh
number, as evidenced by the fact that we observe essentially the same flow patterns as
seen in experiments using full spherical shells (Cardin & Olson 1994; Manneville &
Olson 1996; Aubert et al. 2001).

Temperature is measured using thermistor probes. Hypodermic-type probes (YSI
model 552) are used for measuring the fluid temperature at a depth (<1 mm) beneath
the equatorial plane. A catheter-type probe (YSI model 555) is used for measuring
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Figure 1. A sketch of the experimental apparatus.

the temperature of the cooling fluid entering (Tin) and exiting (Tout) the inner sphere.
We use Tout as the inner-sphere boundary temperature, and we use �TIC = Tout − Tin

to calculate the heat flow at the inner boundary. Surface-type thermistor probes (YSI
model 409B) are attached to the outer boundary. These probes were calibrated to
an accuracy of 0.01 ◦C. The sampling frequency of the probes is �1 Hz, which is
commensurate with the 0.2 s time constant of the hypodermic probe.

We use water and 1 cSt Dow Corning 200 silicone oil, whose properties are
summarized in table 1. These fluids have virtually the same kinematic viscosity,
which allows us to achieve comparable Ekman numbers using the same rotation rate.
As can be seen in table 1, because of the differences in thermal diffusivity and thermal
expansivity, the ranges of the Rayleigh number achieved by water and silicone oil are
complementary. The temperature dependence of kinematic viscosity is small for both
fluids, and is less than a factor of about 1.8 for water and about 1.3 for silicone oil
for the largest experimental temperature range of 0–20 ◦C.

The critical Rayleigh number for the onset of convection in water (Pr = 7.1) at
Ek = 4.7 × 10−6 was estimated experimentally by Sumita & Olson (2000) as Rac =
1.8 × 107, close to Rac =2.3 × 107 at Ek = 4.8 × 10−6 obtained numerically by Aubert
et al. (2001). In this study we adopt our experimental value of Rac = 1.8 × 107 for
water. We could not determine Rac for silicone oil from our experiments because
of the difficulty in maintaining very small temperature differences across the shell, of
the order of 10−2 ◦C. Instead we convert our critical Rayleigh number for water to
the critical Rayleigh number for silicone oil (Pr = 13.9), using the analytical model
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of Busse (1970). This procedure gives Rac = 1.96 × 107 for silicone oil. According to
the analysis of Jones et al. (2000) and Zhang & Schubert (2000), the wavenumber of
the instability at the onset of convection in water and silicone oil is expected to be
approximately the same.

The experimental procedure is as follows. The hemisphere is spun up from rest
to a steady rotation rate, and then the temperature difference across the hemisphere
is imposed. For the silicone oil experiments shown in figure 2, the lowest imposed
temperature at the inner core boundary Tout is 2.2 ◦C, and the highest Tout is 23.0 ◦C.
These correspond to the highest and lowest Rayleigh number cases, respectively.
We monitor the temperature at the boundaries and the heat flow at the inner
boundary until thermal equilibrium is achieved, which typically takes 2–3 hours.
After equilibrium is reached, continuous measurements of temperature in the fluid
are made for about 30 minutes. In some experiments, we then made flow velocity
measurements in the silicone oil by releasing neutrally buoyant tracer material, a
solution of methyl alcohol and a fluorescent dye. In the two-layered convection
experiments, the hemisphere was filled with various volumetric ratios of water and
silicone oil, and the procedures used in the single-layer experiments were repeated. In
addition, the convective pattern in the outer layer was visualized using Kalliroscope
flakes.

3. Results
3.1. Single-layer experiments

3.1.1. Time-averaged thermal structure

Figure 2 shows how the radial temperature profile changes with Rayleigh number.
The figure compares results from our silicone oil experiments with experiments in
water from Sumita & Olson (2000, 2002). The temperature profiles in figure 2 are
normalized by the temperature difference across the shell, so that 0 corresponds
to the temperature at the inner boundary and 1 to the temperature at the outer
boundary. Temperatures at four different radial distances (1.5, 3.1, 5.6, and 8.1 cm)
from the inner boundary are shown. As the Rayleigh number increases, the normalized
temperatures in the fluid asymptotically approach the temperature of the outer
boundary, while the temperature difference across the thermal boundary layer adjacent
to the inner boundary approaches unity, and the thickness of the thermal boundary
layer diminishes. All of these trends are expected consequences of increased convective
heat transfer. The temperature for the equivalent conductive profile in a spherical
shell at radial distances of 3.1, 5.6, and 8.1 cm, respectively, from the inner boundary
are indicated by arrows in figure 2. These are close to the temperatures measured at
the same locations for convection at Ra/Rac � 10, an indication that the convective
contribution to the total heat transfer is small when the Rayleigh number is only
ten times critical. Note that the results from silicone oil and water experiments form
a continuous trend in figure 2, confirming that 1 cSt silicone oil can be used as an
alternative to water for exploring higher Rayleigh number regimes of convection.

Figure 3 shows standard deviations of temperature fluctuations normalized by the
temperature difference across the shell, as a function of Rayleigh number. Note that
the normalized fluctuations decrease with increasing Rayleigh number. Combined
visualization and temperature measurements in water show that rotating spherical
convection is dominated by quasi-geostrophic (columnar) flow driven by cold and
warm plumes. These plumes advect heat in the radial direction, especially near the
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Figure 2. Rayleigh number dependence of the temperature for thermal convection in the
equatorial plane of a rotating hemispherical shell. Measurements taken at distances of
r = 1.5, 3.1, 5.6 and 8.1 cm (�, �, , �), respectively, from the inner boundary. The data for
water are in the dual convective regime identified by Sumita & Olson (2000). Temperatures are
normalized by the temperature difference across the shell. The arrows indicate the equivalent
conduction-state temperature for the probes at r = 3.1, 5.6 and 8.1 cm.

equatorial plane, and their amplitudes reflect the background temperature gradient.
We can similarly interpret the result shown in figure 3 as a consequence of the
smaller temperature gradient in the fluid as the Rayleigh number increases, which is
consistent with figure 2.

The time-averaged thermal structure of single-layer hemispherical convection is
indicated in figure 4, which shows the relation between the temperature difference
across the shell �T and the temperature rise of the water circulating through
the inner sphere, �TIC. Since �TIC is proportional to the heat flow at the inner
boundary QIC, we use this to compute the Nusselt number and its Rayleigh number
dependence, using the method of Sumita & Olson (2000). Since Nu ∝ �TIC/�T and
Ra ∝ �T , after fitting the data as �TIC ∝ �T n, we obtain Nu ∝ Ran−1. Because �TIC

is more accurate for large �T , we use the data corresponding to large �T in order
to minimize the relative error in n (i.e. δn/n). The data for Ra/Rac � 212 gives
n= 1.41 ± 0.02 (with a correlation coefficient of R = 0.997). This, in turn, yields
Nu ∝ Ra0.41, which is slightly larger than the classic Rayleigh number–Nusselt
number power-law exponent 1/3 predicted from boundary layer stability. We note,
however, that accurate determination of the power-law exponent is difficult in our
apparatus because of the limited accuracy of the thermistor probes (about< 0.01 ◦C).
Assuming a maximum error of 0.01 ◦C for �TIC, we find that the range of power-law
exponents consistent with our data is 0.41 ± 0.10. We also compute the Nusselt
number defined as Nu=QIC/(k�T/D) using QIC � 16(�TIC/0.1 K)W (Sumita &
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Figure 3. Rayleigh number dependence of the standard deviation of temperature fluctuations
for four probes at different distances from the inner boundary, near the equatorial plane. Here,
the standard deviation is normalized by the temperature difference across the shell.

Olson 2000). We then find that the range of Nu for the experiments using silicone oil
(1.24 × 109 < Ra < 1.24 × 1010) is 40–186.

Figure 5 shows the standard deviation of temperature fluctuations versus �TIC at
four different radial points in the fluid. We use the large-�TIC data from each probe
to obtain the power-law fit, so that the relative error of the slope b (i.e. σb/b) gives a
local minimum. The power-law exponents obtained this way for the three inner probes
are close to n= 0.6, consistent with the model of turbulent columnar convection of
Cardin & Olson (1994), Aubert et al. (2001) and Sumita & Olson (2002) for water.
This agreement indicates that the same scaling law is applicable for the experiments
using silicone oil.

3.1.2. Time-dependent thermal structure

The time-dependent features of the temperature records can be interpreted in
terms of the structure of the flow. Figure 6 shows examples of temperature time
series at several Rayleigh numbers, recorded at probes located near the inner and
outer boundaries, respectively. In these records, the temperature is normalized by the
temperature difference across the shell �T . As a result of this particular normalization,
high-frequency temperature fluctuations due to background thermal noise tend to be
magnified in experiments where �T is small (see figure 6b). With increasing Rayleigh
number the time-average temperature of the innermost and outermost probes
approach each other, and the (normalized) amplitude of temperature fluctuations
becomes smaller. The temperature fluctuations are generally irregular, although they
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Figure 4. Relation between the imposed temperature difference across the shell �T , and the
temperature rise of the circulating water through the inner sphere �TIC. Data points in solid
circles are used to obtain a power-law fit of �TIC = 0.006�T 1.41 ± 0.02 (correlation coefficient
0.997).

show occasional, predominant negative, spikes. Also we find that the frequency of
temperature fluctuations increase with Rayleigh number.

Figure 7 shows a histogram of the temperatures from the time series records in
figure 6. The temperature bins are normalized by the standard deviation of the record.
Note that the histogram is asymmetric, with the length of the negative tail about four
times the standard deviation. The asymmetry of this histogram can be interpreted
quantitatively using the skewness S of the distribution, S = 〈(T −〈T 〉)3〉/〈(T −〈T 〉)2〉3/2

where 〈 〉 denotes the average over all data points in the record. We find that the
skewness of the temperature records is negative for all probes in all of our experiments.
The skewness ranges from S � −0.5 near the inner boundary to S � −0.1 near the
outer boundary. There is no clear dependence of the skewness on the Rayleigh
number, which is evident from the similarity of the shape of the histogram for
different Rayleigh numbers in figure 7.

We next examine the time derivative of temperature fluctuations S ′, a statistic which
has been used to interpret convective turbulence by Belmonte & Libchaber (1996)
and by Sumita & Olson (2002). We find that S ′ is negative near the inner boundary
(about −0.4 for the innermost probe) and tends to zero near the outer boundary.
Previous experiments (Sumita & Olson 2002) have shown that this is a result of the
saw-tooth pattern of temperature fluctuations. A negative S ′ indicates a fluctuation
with a steep decrease followed by a gradual increase. Two interpretations of the
observed negative S ′ have been suggested. Belmonte & Libchaber (1996) interpreted
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Figure 5. Standard deviation of temperature fluctuations versus the temperature rise of the
circulating water through the inner sphere. Probes are located at four different distances from
the inner boundary (r = 1.5, 3.1, 5.6, 8.1 cm), and are at the equatorial plane. The power-law
fit for each probe is as follows: T ′ = 0.89�T 0.63

IC at r =1.5 cm, T ′ = 0.61�T 0.60
IC at r = 3.1 cm,

T ′ = 0.41�T 0.58
IC at r = 5.6 cm, T ′ = 0.41�T 0.78

IC at r = 8.1 cm.

them as intermittent bursts of cold plumes. The interpretation by Sumita & Olson
(2002) involved the transport of columnar vortices in rotating convection. In rotating
spherical convection, cyclonic vortices are larger than anticyclonic vortices, because
of the Ekman boundary layer pumping, and the azimuthal transport of these unequal
vortices produces asymmetric temperature fluctuations. The azimuthal transport of
vortices is indicated by flow measurements described in the next section, and is in
accord with measurements by Sumita & Olson (2002) in water at lower Rayleigh
numbers.

The frequency power spectra for the records in figure 6 are shown in figure 8.
These spectra are normalized so that the total power is unity. Each power spectrum
is characterized by low-frequency and high-frequency parts with weak and strong
frequency dependences, respectively. The silicone oil experiments at higher Rayleigh
number have more power in the high-frequency range, which is evident from the time
series records in figure 6. Fitting the high-frequency part to a power-law f −n gives
an exponent of n= 1.72 ± 0.06(0.06 < f < 0.5Hz) for Ra/Rac = 634 (silicone oil) and
n=3.27 ± 0.06(0.08 < f < 0.5 Hz) for Ra/Rac = 53 (water).

3.1.3. Flow structure

The flow structures observed in these experiments correspond to the dual convective
regime reported by Sumita & Olson (2000). In this regime, the convection is driven by
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Figure 6. Examples of temperature time series from thermal convection in silicone oil in a
rotating hemisphere: (a) Ra/Rac = 634 (�T =14.3 ◦C), (b) Ra/Rac = 63 (�T = 0.20 ◦C); and
water: (c) Ra/Rac = 53 (�T = 13.85 ◦C). Temperature measurements at the innermost probe
(1.5 cm from the inner boundary) are shown by thick lines, and those at the outermost probe
(8.1 cm from the inner boundary) are shown by thin lines. Temperature T is normalized as
(T − T̄1.5)/�T , where T̄1.5 is the average temperature of the innermost probe, and �T is the
temperature difference across the shell.
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serpentine nearly two-dimensional plumes originating from both the inner and
outer boundaries, which form curtain-like cylindrical structures parallel to the rotat-
ing axis. Although we could not visually confirm this two-dimensionality of the flow
in the present experiments, we can infer a geostrophic balance by estimating A, the
ratio of buoyancy and Coriolis forces (Cardin & Olson 1994)

A =
αgT ′

ΩV
. (3.1)

Here, V is a characteristic convective velocity and T ′ is a characteristic tempera-
ture fluctuation associated with the convection. Substituting T ′ = 0.13 ◦C and V =
3 mm s−1, typical values at mid-shell for Ra/Rac ∼ 250, gives A � 0.03, indicating
that the force balance is quasi-geostrophic and that the flow should be nearly two-
dimensional.

The average zonal velocity was measured by releasing neutrally buoyant fluid
parcels into the convecting fluid. By tracking the parcels released at different radial
distances from the inner boundary, we find that the zonal flow is westward at all
Rayleigh numbers we have studied. For example, at Ra/Rac = 254 the westward flow
is Vφ = 3 mm s−1 (Rossby number, Ro = V/ΩD =1.4 × 10−3) which is about an order
of magnitude larger than that at Ra/Rac = 44 using water (Sumita & Olson 2000).
We were not able to measure the radial flow velocity, but according to the results of
weakly nonlinear theory (Zhang 1992), we can estimate that the radial flow should
be faster than the zonal flow, a situation found at lower Prandtl number (Sumita &
Olson 2000).

3.2. Two-layered convection

We have performed a series of experiments on layered convection, using two
immiscible fluids to produce a stable density stratification. The temperature difference
across the shell is fixed at �T = 11.15 ± 0.52 ◦C in these cases, and we vary the
thickness ratio of the two layers. We use 1 cSt silicone oil for the inner layer and
water for the outer layer. A similar set of two immiscible fluids was previously used
by Hart (1972), but in a cylindrical geometry and at much lower rotation rates.

The interface between the layers assumes a parabolic shape, a result of the combined
effect of centrifugal acceleration and laboratory gravity. We define the characteristic
thickness of the inner and outer layers as the thickness of each layer in the equatorial
plane. For the rotation rate used in this study (206 r.p.m.), the interface between the
two layers intersects the outer boundary when the thickness of the inner layer is
greater than 3 cm. The density contrast between these two layers is

�ρ

ρ
= 2

(ρo − ρi)

(ρo + ρi)
� 0.203 (3.2)

where subscripts i and o denote inner and outer layers respectively. The influence of
the stratification can be estimated by comparing buoyancy frequency to rotation rate,

2π

Ω

√
�ρg

ρδ
� 2π

√
�ρ

ρ

D

δ
� 34. (3.3)

Here δ is the typical size of the plume and we estimate it using a thermal boundary
layer thickness of � 0.7 mm obtained using the evaluation which follows. This estimate
shows that the stratification effects dominate over instabilities related to rotation.

The convective pattern in the outer layer is basically the same as that for single-
layered convection. It consists of plumes with a wavenumber of about 108 for all
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Figure 9. The relation between the thickness of the inner layer of silicone oil and the
heat flow at the inner boundary in two-layer convection in a rotating hemispherical shell.
The temperature difference across the inner and outer boundaries is �T = 11.15 ± 0.52 ◦C. The
best-fit scaling law for layered cases (shown as filled circles) is for a = 12.75 (see text). The
data shown as open circles are the single-layered case.

thicknesses of the outer layer we examined. By tracking the motion of coloured
tracers, we infer that the average zonal flow is westward, the same as found in the
single-layer cases. Note that the fluid interface approximates a stress-free condition, so
that each layer has one nearly free boundary and one rigid boundary. The insensitivity
of the zonal flow direction to the exact mechanical boundary conditions may be a
consequence of small Ekman number and hence very thin Ekman boundary layers
(Zhang & Jones 1993). The flow velocity is, however, slower for layered convection,
which is consistent with the lower heat flux and generally smaller kinetic energy
compared to single-layer convection.

Statistics of temperature fluctuations for the layered convection cases indicate
important differences with the single-layer cases. Where the outer layer is thin
(thickness <5 cm) the temperature fluctuations in the outer layer (r =8.1 cm) show
positive spikes (skewness). This suggests that the warm plumes dominate over cold
plumes, which is in contrast to the single-layer case, where the skewness is always
negative implying that the cold plumes dominate over warm plumes. We interpret
this to be a consequence of the two layers, which inhibits cold plumes originating
from the inner core penetrating into the outer layer.

In two-layered convection we find that heat flow and the radial temperature
structure vary systematically with the thickness ratio. Figure 9 shows how the flow
changes as the thickness of the inner layer increases. Heat flow decreases in a stepwise
manner when there is a thin layer of silicone oil above the inner boundary, and then
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gradually increases with the thickness of the inner layer. The radial temperature
profile also changes in a corresponding way, and the thermal boundary layer adjacent
to the inner boundary becomes thinner as the thickness of the inner layer increases.

The following is a qualitative explanation for the thickness dependence of heat
flow in layered convection. Because of the spherical geometry, the conductive radial
temperature profile has its steepest gradient at the inner boundary. In the presence of
convection, this gradient is further steepened, so that most of the temperature change
in the fluid is localized there. This localization of the thermal gradient also occurs
in a layered spherical shell, unless the outer layer is a thermal insulator and is not
convecting. In our experiments, the outer water layer is in fact more conductive (by
about a factor of 6) than the inner silicone oil layer, so the first situation applies.
As a result, with increasing thickness of the inner layer, the temperature at the
fluid interface asymptotically approaches the temperature of the outer boundary. We
emphasize that this tendency is enhanced by convection. The conductive temperature
profile of a layered system where the thermal conductivity of the inner layer is smaller
than the outer layer (ki < ko) in either spherical or cylindrical geometry gives rise to
smaller heat flux at the inner boundary as the thickness of the inner layer increases,
and is opposite to what we observe in our experiments.

A quantitative estimate of the dependence of heat flow on layer thickness can be
constructed using the following arguments. First we assume the radial temperature
profile is similar to the one shown schematically in figure 10. For simplicity we have
neglected the thermal boundary layer in the outer region of each layer, because the
temperature drop there is small compared to that in the inner boundary region of
each layer, another consequence of the spherical geometry. Heat flow at the inner
surface of each layer can be written as

qi = ki

�Ti

δi

, (3.4)

qo = ko

�To

δo

. (3.5)

The thickness of the thermal boundary layer can be calculated as follows. We assume
the heat transfer law Nu ∝ Ra1/3, which approximately agrees with our measurements.
According to this law, the thickness of the thermal boundary layer is independent
of the total thickness of the layer. In addition, the measurements by Rossby (1969)
showed that the Nusselt number of rotating convection is approximately independent
of the Ekman number for Ra/Rac > 10. Our experiments meet this condition. A
quantitative verification of this can be made by comparing the Nusselt number for
non-rotating Rayleigh–Bénard experiments using water with our Nusselt number at
the same Rayleigh numbers. Using Nu= 0.19Ra0.28 (Qiu & Xia 1998), we obtain
Nu= 67–127 for a Rayleigh number range of Ra = 1.24 × 109–1.24 × 1010. This is
similar to our measurements of Nu=40–186 for Ra = 1.24 × 109–1.24 × 1010. Together,
these imply that the thickness of the thermal boundary layer varies as

δi = aDiRa
−1/3
i , (3.6)

δo = aDoRa−1/3
o , (3.7)

where D is the layer thickness, and a is a constant coefficient. This form for the thermal
boundary layer thickness in a rotating thermal convection has been previously used
by Sakai (1997). Finally, the total heat flow at the inner surface of the inner and outer
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Figure 10. A schematic diagram showing the radial temperature profile which is used to
model the thickness dependence of heat flow shown in figure 9.

surfaces must balance, so that

R2
i qi = R2

oqo, (3.8)

where Ri and Ro =Ri + Di are the radii at the inner surface of each layer. Using the
above relations we find �To/�Ti as

�To

�Ti

=

(
αigiκoνo

αogoκiνi

)1/4 (
ki

ko

)3/4 (
Ri

Ro

)3/2

. (3.9)

In the simpler case where the material properties in the two layers are identical, (3.9)
reduces to

�To

�Ti

=

(
gi

go

)1/4 (
Ri

Ro

)3/2

, (3.10)

which is a decreasing function of Di , indicating that the interfacial temperature
approaches the temperature of the outer boundary as Di increases. From (3.4) and
(3.6), we obtain qi ∝ �T

4/3
i g

1/3
i showing that the heat flow at the inner boundary would

increase with Di , consistent with the measurements. We note that similar experiments
and analyses for non-rotating layered thermal convection in a cylindrical geometry
were performed by Namiki & Kurita (2003).

In figure 9, we fit the temperature data by the least-squares method and obtain the
prefactor a = 12.75. Using this value, we can calculate the average thickness of the
thermal boundary layer as δ � 0.7mm. We also tried to fit the data using the heat
transfer relation Nu ∝ Ra2/7, but this gave a poorer fit.

4. Implications for convection in the Earth’s core
The temperature profile in the Earth’s core probably resembles the temperature

profile in our experiments in several important respects. In particular, because the
Earth’s inner core is an important energy source, it is probable there is a thermal
boundary layer near the inner core boundary (ICB). Furthermore, convection has
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probably mixed the fluid outer core so the temperature profile there closely follows
an adiabat. It is also probable there is a thermal boundary layer below the core–
mantle boundary (CMB), although it is unlikely to be as strong as that above the
ICB, for the following reasons.

A typical estimate of the heat flux at the CMB is qCMB � 20 mW m−2, which is
comparable to the heat flux conducted down the core adiabat, qCMB

ad � 18 mW m−2

(see Sumita & Yoshida 2002, for a review):

qCMB ∼ qCMB
ad . (4.1)

This implies that the temperature gradient in the thermal boundary layer beneath
the CMB is close to the adiabat. On the other hand, as a consequence of the smaller
radial pressure gradient, the adiabatic temperature gradient near the ICB is less steep
than that near the CMB. The heat conducted down the adiabatic thermal gradients
at the two boundaries are related approximately as

qICB
ad ∼ 0.4qCMB

ad . (4.2)

Considerations of the heat budget for the core indicate that about 1/3 of the heat
loss from the core is from the inner core, so that QICB/QCMB ∼ 1/3. From this it
follows that

qICB

qCMB

=
QICB

QCMB

4πR2
CMB

4πR2
ICB

∼ 3. (4.3)

From the above relations, we obtain

qICB
ad

qICB

∼ 0.1
qCMB

ad

qCMB

∼ 0.1. (4.4)

This result indicates that the temperature gradient in the thermal boundary layer
immediately above the ICB is approximately 10 times steeper than the adiabat.
Therefore the basic temperature structure in our experiments is similar to the basic
temperature structure in the core with the adiabatic gradient removed.

There are two simple models of possible stable stratification in the Earth’s outer
core that are consistent with the formation of the inner core: a light (low-density)
layer at the top of the core, or alternatively, a heavy (high-density) layer just above the
inner core. In either case we may reasonably assume that the thermal conductivities of
the two layers are comparable, since both layers are iron-rich liquids. Our experiments
indicate that the heat flow at the inner core boundary would be strongly suppressed
by a thin dense layer at the bottom of the core, and not as strongly affected by a
light layer at the top of the core. A dense layer at the bottom of the outer core could
be an iron-rich liquid depleted in lighter elements. Such a layer could suppress heat
transfer and inner core solidification, and might even result in melting of the inner
core. Alternatively, it may form from settling of solid iron particles, forming a slurry.
There are several lines of seismological evidence suggesting that a stably stratified
layer exists above the ICB (Souriau & Poupinet 1991; Song & Helmberger 1995).
In addition, other lines of seismological evidence indicate a possible stably stratified
layer beneath the CMB (Lay & Young 1990). Our experiments indicate that this layer
would have a smaller effect on heat transfer than a stably stratified layer above the
inner core.
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5. Summary
We have conducted thermal convection experiments in a rapidly rotating hemi-

spherical shell at Ekman number Ek= 4.7 × 10−6 and Rayleigh numbers up to Ra �
612Rac. We find that the temperature gradient in the fluid becomes nearly isothermal
as a consequence of vigorous convection, with a thin thermal boundary layer above
the inner boundary. Convective heat measurements indicate a power-law relationship
between the Nusselt number and the Rayleigh number with an exponent of about 0.4.
The amplitude of temperature fluctuations is in accord with the simple geostrophic
turbulence model of Cardin & Olson (1994). Experiments on layered convection in
the same spherical shell geometry show that heat transfer is less than in single-layer
convection, and in particular, heat transfer is strongly inhibited by a thin layer above
the inner boundary.
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by the Japan Society for the Promotion of Science postdoctoral fellowships for
research abroad during which the experiments were carried out at Johns Hopkins
University. The experiments were supported by the Geophysics Program of NSF and
NASA grant NAG5-11220.
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